
DOCUMENT PESUME

ED 287 442 IR 012 825

AUTHOR Seidman, Robert H.
TITLE Research on Teaching and Learning Computer

Programming Symposium.
PUB DATE Apr 87
NOTE 15p.; Paper presented to Symposium (15.03) at the

Annual Meeting of the American Educational Research
Association (Washington, DC, April 20-24, 1987).

PUB TYPE Viewpoints (120) -- Reports - Research/Technical
(163) -- Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Cognitive Processes; *Computer Science Education;

Group Instruction; *Instructional Design;
Metacognition; Models; *Programing; *Programing
Languages; Psychological Studies

IDENTIFIERS BASIC Programing Language; LOGO Programing
Language

ABSTRACT
Four conference papers are reviewed in this

introduction to a symposium. The first paper is by Clements and
Merriman, who make a case for the reflection of Steinberg's
information processing componential model of cognitive processes in
the LOGO language and computational environment; present a series of
experiments that attempted to tailor the environment to aspects of
the theoretical model and to assess transfer of componential and
metacomponential skills; and speculate on how to structure an ideal
LOGO environment to facilitate transfer of cognitive skills. In the
second paper, Perkins, Schwartz, and Simmons report their findings
from interviews with naive BASIC programmers, including their need
for a mental model of the computing process, lack of good problem
solving strategies, and problems in personal confidence and control.
A metacourse designed to teach metacognitive skills is proposed to
address these problems. Fay and Mayer, in the third paper, argue that
LOGO mastery is affected by the cognitive misconceptions of naive
learners, and provide a computational model of such misconceptions.
In the final paper, Webb and Lewis confirm that group learning of
programming has positive results and propose a metacourse to promote
efficacious group behavior. (MES)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

b

American Educational Research Asssociation Annual Meeting

Washington, D.C. April 20-24, 1987

Research on Teaching and Learning Computer Programming Symposium (15.03)

U S. DEPARTMENT G' EDUCATION
Once ol Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document nos been reproduced as
received from the Demon or organization
originating it.

0 Minor changes have been made to improve
reproduction quality

Points of view or opinionsstated in this docu-
ment do not necessarily represent official
OER1 position or policy

Robert H. Seidman Chair/Discussant
New Hampshire College Graduate School
2500 N. River Road
Manchester, N.H. 03104

cc

BEST COPY AVAILABLE

2

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS SEEN GRANTED EY

Robert H.!:.eidman

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Page 1

Welcome to the "Research on Teaching and Learning Computer Programming"

Symposium; I will read the objectives written by the Symposium organizer,

Richard Mayer.

"The purpose of this symposium is to investigate how students learn
programming languages and how instruction can affect learning. In particular,
the symposium focuses on two major issues: (1) What are the cognitive
consequences of learning a programming language. A more specific version of

-this question is: When a student learns to use a programming language, does
the student also learn a procedural way of thinking that can be applied to
problems outside the domain of programming? (2) What kind of instruction
enables students to productively learn programming? A more specific version of
this question 15: How much and what kind of guidance should be given to
novices who are learning to program?"

"Programming languages are being incorporated into school curricula, often
without the benefit of a research base. This symposium brings together some of
the leading and most active researchers in the area of learning and teaching
of programming languages. Symposium participants have been requested to
present their research and its implications for educational practice. Two
important research implications for education addressed and clarified in this
symposium are: (1) that learning to program can transfer to some problem
solving tasks but that such transfer is limited, and (2) that specific kinds
of guidance are needed for many novices to learn programming."

I ask each participant to take no more than 10 minutes so that we can leave

adequate time for questions. We will proceed in the order listed in the

program.

3

.."

Page 2

I am pleased to inform you that more in-depth versions of the Conference

papers will appear later this year in a volume edited by Richard Mayer,

titled: -. I . 1 I It . II It I

perspectives. It will be published by Laurance Erlbaum Associates.

One way to discuss a set of conference papers such as these is to assess the

importance of the research question addressed, determine whether the research

has been carried out well, examine the appropriateness of the conclusions, and

explore the important implications of the combined research endeavors.

Given the limited time here, my approach as discussant is to briefly

synthesize the research, point out what I think are complementary as well as

conflicting themes, and assess their contributions to and implications for

theory, knowledge and practice. Finally, I mean to mention a new development

not addressed in this symposium, and generally neglected in the mainstream

educational computing research community.

My regret is that I recetved only four papers in sufficient time for review.

The Clements and Merriman paper sets the framework for discussing the others.

It is divided into three parts. The first makes a case for the reflection of

Steinberg's information processing componential model of cognitive processes

in the LOGO language and computational culture (or environment). The second

4

Page 3

section presents a series of experiments that try to tailor the environment to

aspects of the theoretical model and to assess transfer of componential and

metacomponential skills. The third part of the paper presents related research

....and speculates on '-ow to structure an ideal Logo environment to facilitate

transfer of cognitive skills.

This is an important paper for several reasons. It embeds Logo and its

environment within a theortical framework which provides a standard against

which to measure efficacy and it develops new instruments to measure transfer

of specific cognitive skills. The paper provides many concrete suggestions for

practitioners who want to tailor Logo enviornments for maximum effectivenes.

Finally, the authors put forward the seemingly outlandish proposition that

mastery of Logo programming may not, in and of itself, be a factor in the

transfer of cognitive skills.

shouldn't be surprising that the Logo language and environment are somewhat

isomorphic to the cognitive theory proposed. After all, the theoretical model

is itself derived from computer information processing theory and software

implementation. The theory itself draws heavily on computational metaphors.

Thus, I would expect almost any procedural computer language (and its

accompanying environment) to reflect the theory in a more than superficial

way. That Logo has a physical and screen "turtle" makes it also attractive to

Piagetian developmentalists who see a potential "matching environment" between

the concrete and formal operational stages. But I digress.

Clements and Merriman do an excelent job of pointing out specific

correspondences between aspects of the theory and aspects of Logo and its

environment. They also, in a way, take the pressure off the Logo language

5

Page 4

itself by introducing what Perkin's calls, in his paper, a sort of

"metacourse" which includes explicit instruction (through the "homunculi") to

help students exercise their metacomponential and/or knowledge acquisition

skills.

Clements and Merriman report mixed success for their experiment. As is the

......case in most pioneering research, they raise more questions than they answer.

What can they tell us about the validity and reliability of their new

assessment instruments? They readily admit that these instruments lacked

sufficient items to allow accurate statistical discrimination of

metacomponents. Are there other situations and instruments to measure transfer

of effects such as these? How can they control for the individual cognitive

predispositions of novice programmers as pointed out by Fay and Mayer? It

would be interesting to see whether exposure to Logo and its accompanying

environment affect skill transfer as defined by other cognitive theories.

But most importantly, Clements and Merriman did not care to measure mastery of

Logo programming and then correlate it with cognitive skill transfer. This is

1,,,an interesting approach. In their literature review they find that mastery of

programming was not consistently a significant factor in transfer of cognitive

skills. What then is a significant factor? Is it the overall environment

within which Logo is embedded? Clement and Merriman seem to think so with

respect to their environment. The fact that cognitive skill transfer can

apparently take place without mastering Logo programming could serve as an

argument for not teaching Logo but keeping aspects of its environment (the

metacourse). Although, it might be shown that the vehicle, Logo, is

indispensible for making the environment work and therefore is indeed a

necessary component. This is food for thought and future research.

6

Page 5

While Clements and Merriman believe that environemnt, rather than programming

mastery, might be more decisive in aiding cognitive skill transfer, Perkins,

Schwartz and Simmons argue that enviornment is crucial in making it easier to

learn programming. Unlike Clements and Merriman, their environment was not

designed specifically to promote transfer. Both research groups do believe

that teaching a computer programming language is not enough. A special

environment has to be created. This, of course, was Papert's original point

although he apparently claimed that Logo alone provided such an environment.

Now we are seeing a separate environment being fleshed out within an overall

theoretical paradigm.

N..gerkins, Schwartz and Simmons quite aptly point out that procedural

programming is problem-solving intensive and precision intensive and therefore

hard to learn. (This supports the argument for abandoning procedural

programming in favor of logic programming. More later.) From the results of

clinical interviews of naive BASIC programmers they discover: the need for an

efficacious mental model of the computing machine or process; the lack of good

problem solving strategies; and problems in personal confidence and control.

All influence BASIC mastery.

The solution proposed was tc construct a "metacourse," which is a series of

lessons put together to address these problems. The course is designed to

teach metacognitive skills (such as those presented by Clements and Merriman)

..and is as Perkins, Schwartz and Simmons point out, an experiment in

instructional design.

This research, unfinished as it is, represents a significant attempt to

Page 6

construct an appropriate environment. However, it is not clear from the

description of the "paper computer" and "interpreter" just what kind of mental

computer model the students are presented with. Are students led to an

,,,..understanding of the functional components of the computer and to its

fetch/execute cycle? Is it important to know this? How does the "interpreter"

illustrate the logic underlying the IF-THEN conditional? There is evidence

that indicates that this logical conditional is naturally interpreted by

children in a biconditional manner which may be inconsistent with the standard

computational interpretation (Seidman, 1981, 1986). How are the notions of

patterns and metapatterns presented? What is the explicit theory behind the

course design and pedagogy? How important is method of presentation to student

understanding?

The notion of metacourse is a refreshing one since it appears to raise the

teachin-1 of programming from the merely technical to something that

...potentially encompasses the education of higher level skills. In my view, it

is important to see more curriculum details in order to better understand

the study's results.

The study's results were admittedly confounded by the inability to factor out

the higher ability of the control group by analysis of covariance. Dropping

high ability subjects is less acceptable. Teacher training problems may also

have clouded the results. Also, the metacourse was not explicitly designed to

promote transfer.

Perkins, Schwartz and Simmons wisely make the point that the metacourse may be

able to be oriented toward one or the other but not both: (1) good programming

...and (2) transfer of general cognitive skills. In fact, this particular

8

Page 7

metacourse was focused specifically on good programming. The idea of a "bridge

course" specifically addresses the transfer of cognitive skills.

In the end, Perkins, Schwartz and Simmons argue convincingly for programming

instruction (within an appropriate environment) toward three distinct ends:

good programming (technical), cognitive skills (higher level competencies) and

,,waultural (societal demands/understanding). They support the notion that

computer programming can be a vehicle in the latter two areas.

I note with interest that Perkins, Schwartz, Simmons and Clements and

Merriman all agree that mere exposure to a programming language is not enough

(for either mastery or transfer of cognitive skills) and that technical

instruction must be augmented by direct or indirect instruction geared toward

a higher level. Can we call this "metainstruction?"

The efforts of these two research teams in this area can have great future

impact on the general and widespread teaching of computer programming in the

nation's schools. This research needs to be carried on if we are to ever hope

..to educate students beyond the level of technical programming skills.

9

Page 8

Fay and Mayer make an important contribution to our understanding and awareness

of misconceptions that naive programmers bring to the learning experience.

Their research complements the previous two papers in the sense that it shows

that not only do we need appropriate environments surrounding the teaching of

programming, but, we also need to be able to diagnose and appropriately match

learners to those environments. Fay and Mayer's specific contribution is the

identification of the egocentric conception of space and the undiscriminated

conception of command with regard to the Logo graphical turtle environment. In

addition, they present a computational model of the dimensions of these

misconceptions.

Fay and Mayer are to be complimented on their conceptual clarity and very

tightly controled experiment. However, I have a very specific concern about

the terminology used in their Logo instructions. I wonder whether the word

"turn" might have been misleading to the naive programmer. Our everyday

experience with turning usually entails both rotating and moving. Whether

riding a bike, walking or driving a car, to turn usually means to move and to

rotate at the same time. Perhaps the word "rotate" or a phrase equivalent to

"rotate about the midpoint of the turtle" might make the meaning of the turn

command less confusing and thus affect the turn-and-move misinterpretation.

Fay and Mayer's admonition to offer programming at a developmentally

appropriate level needs to be taken very seriously. I would think that

readiness to learn a concept (or the need to unlearn a previously held one)

might be crucial for learner success. But just what is the nature of the match

between programming instruction and appropriate cognitive developmental level?

Furthermore, on what particular dimensions can this match take place? Fay and

10

Page 9

...Mayer have identified one such dimension. There are surely others. I would

offer the IF-THEN conditional as another candidate. It reflects the notion of

deductive necessity which appears in different ways at different Piagetian

developmental levels. This command is fundamental in any procedural computer

language and is the nearest explicitly logical programming language construct.

Fay and Mayer would claim that Logo mastery is affected by learner cognitive

misconceptions. Clements and Merriman might say that while this may be true it

is not crucial to the transfer of cognitive skills. What's a practitioner to

think of this much less do about it? Either mastering a programming language

is important or it is not. Do we really need, as Fay and Mayer suggest, to

intervene to correct misconceptions if indeed we don't really care about

programming mastery? After all, Perkins, Schwartz and Simmons's "bridge

course" is directed toward cognitive skills transfer using programming as a

vehicle. Would we want students to be frustrated with not mastering the

language but satisfied that they have mastered higher level cognitive skills?

11.

Page 10

The Webb and Lewis paper is an important contribution to the area of how to

.......structure the social use of computers with regard to learning computer

programming. They show that actively participating in group discussions, by

giving and receiving explanations and input suggestions, is beneficial.

Overall, Webb and Lewis confirm that group learning of programming seems to

have positive results.

Webb and Lewis found that student discussions with each other about planning

and debugging strategies were positively related to achievement. Most

interesting to me was the result that student verbalization of planning and

debugging to an instructor was negatively or not related to programming

achievement. This calls into question the role of the instructor in the

teaching/learning process. Implications for instructional design are obvious.

.,I found Webb and Lewis's detective work in finding (from the research results)

a plausible explanation of this phenomenon truly impressive. This is a fine

example of educational research detective work.

Webb and Lewis were able to conclude that group initiating behavior was

proabably not based on the group's need for help and that the instructor's

behambr was mostly reactive and indirect. Thus, it was group working style,

more than anything else, that accounted for the high frequency of asking the

instructor questions. The help that the instructor did provide may have then

been an impediment to students developing their own problem solving

strategies.

Xebb and Lewis propose a "metacourse" of sorts (perhaps I should call it a

12

Page 11

"shadow course") that would augment the programming environment to promote the

kind of group behavior deemed efficacious to taking full advantage of the

computer programming learning environment. They suggest that the instructor,

given the results of their study, should intervene as little as possible so

that students would be forced to verbalize their problem solving strategies to

each other.

It is not clear just how this suggestion fol: practice impacts on the Clements

and Merriman and Perkins, Schwartz, Simmons' prescriptions for a programming

environment. It would depend upon how involved the researchers see the

instructor. I suspect that flexibility with regard to instructor intervention

is important in their schemeb. Thus, I see a potential problem given the Webb

and Lewis results.

In conclusion, three of the four papers reviewed suggest extra-programming

interventional environments. Fay and Mayer's research points to the need to be

sensiti/e to the cognitive baggage students carry into these environments.

Their work suggests a diagnosis and matching environmental component that

would help to tailor the environment for maximum effectiveness regardless of

whether the environment is structured for learning just programming skills,

cognitive skills or both.

Together, these four papers offer significant contributions to thinking about

and actually constructing appropriate learning environments around specific

programming language instruction. I see the possibility of an important

expansion of the much maligned notion of "computer literacy" and I appreciate

13

Page 12
- . .

these researchers for their clear thinking and creative research.

Finally, I want to alert the research community to the impending invasion of a

computer programming paradigm quite distinct from the currently popular

procedural languages like BASIC, Logo, and Pascal. Prolog, is one of a class

of logic programming languages that is declarative rather than Imperative

(i.e., procedural). One describes to the computer what the problem is rather

....than bow to go about solving the problem. European researchers (Ennals and

Briggs, 1985) are already claiming that Prolog is efficacious in teaching

logic, problem solving and higher level skills.

I believe that North American researchers would do well to closely examine

this new programming paradigm and the possible affects it might have on the

kinds of environments being proposed here today.

14

1

Page 13

REFERENCES

Ennals, R. and Briggs, J. (1985). Fifth Generation Computing: Introducing
Micro-Prolog into the Classroom. 1011. of Educational Computing Research,
1, 97-111.

,-Seidman, R. H. (1981). The Effects of Learning a Computer Programming Language
on the Logical Reasoning of School Children. Paper presented at the
American Educational Research Association Annual Meeting, Los Angeles, CA.
ERIC: ED 205 206.

Seidman, R. H. (1986). Transductive Reasoning and the Teaching of Conditional
Logic to Children. Research Report 86-2, Occassional Paper Series.
New Hampshire College Graduate School, Mancherster, NH.

15

